Mercure atmosphérique : Une décennie d’observations sur l’île d’Amsterdam

(crédit: TAAF – Terres australes et antarctiques françaises)

La Convention de Minamata, entrée en vigueur en 2017, vise à protéger la santé humaine et l’environnement des effets nocifs du mercure en réduisant les émissions anthropiques associées et les niveaux environnementaux. La Conférence des Parties doit évaluer périodiquement l’efficacité de la Convention en utilisant les données de surveillance existantes et les tendances observées. La surveillance des niveaux de mercure dans l’atmosphère a été proposée comme indicateur clé. Cependant, il existe des lacunes dans les données, en particulier dans l’Hémisphère Sud. L’article relayé dans la brève INSU (lien) présente plus d’une décennie de données de surveillance du mercure atmosphérique sur l’île d’Amsterdam (TAAF – océan Indien). Les données (concentrations dans l’air ambiant des espèces gazeuses du mercure élémentaire et oxydé + flux annuels de dépôts humides de mercure total) sont mises à la disposition de la communauté afin de soutenir la prise de décision et les avancées scientifiques en lien avec la problématique internationale dédiée. Il est important de noter que ces travaux sont complétés par le suivi parallèle d’une partie de ces composés à l’OPAR-Maido (OSU-Réunion) depuis 2017. Les données collectées à l’OPAR-Maido, non affichées dans cet article, permettent un renforcement de la surveillance de ces composés à l’échelle du bassin de l’océan indien et contribuent à une meilleure compréhension de l’état actuel et du devenir de ce polluant dans cette région du monde.

Référence complète : Magand, O., Angot, H., Bertrand, Y., Sonke, J.E., Laffont, L., Duperray, S., Collignon, L., Boulanger, D., Dommergue, A., 2023. Over a decade of atmospheric mercury monitoring at Amsterdam island in the French southern and Antarctic Lands. Sci Data 10, 836 (2023). https://doi.org/10.1038/s41597-023-02740-9

Contact local : Olivier Magand, OSU-Réunion (olivier.magand@univ-reunion.fr)

Contacts extérieurs : Aurélien Dommergue – Enseignant chercheur de l’Université Grenoble Alpes à l’Institut des géosciences de l’environnement (IGE) (aurelien.dommergue@univ-grenoble-alpes.fr), Hélène Angot – Chercheuse CNRS à l’institut des géosciences de l’environnement (IGE – OSUG) (helene.angot@univ-grenoble-alpes.fr), Yann Bertrand – Ingénieur en instrumentation du CNRS à l’Institut des géosciences de l’environnement (IGE) (yann.bertrand@cnrs.fr)


Aperçu des espèces atmosphériques de mercure atmosphériques surveillées sur l’île subtropicale d’Amsterdam depuis 2012. Le mercure élémentaire gazeux (GEM) est l’espèce atmosphérique actuellement surveillée en parallèle à l’OPAR-Maido depuis 2017. Figure extraite de Magand et al., 2023.

Atmospheric Mercury: A decade of observations on Amsterdam Island

(credit: TAAF – Terres australes et antarctiques françaises)

The Minamata Convention, which came into force in 2017, aims to protect human health and the environment from the harmful effects of mercury by reducing associated anthropogenic emissions and environmental levels. The Conference of the Parties must periodically evaluate the effectiveness of the Convention using existing monitoring data and observed trends. Monitoring atmospheric mercury levels has been proposed as a key indicator. However, data gaps exist, particularly in the Southern Hemisphere. The article relayed in the INSU brief (link) presents over a decade of atmospheric mercury monitoring data on Amsterdam Island (TAAF – Indian Ocean). The data (ambient air concentrations of elemental and oxidized mercury gas species + annual wet deposition fluxes of total mercury) are made available to the community to support decision-making and scientific advances in relation to the dedicated international issue. It is important to note that this work is complemented by parallel monitoring of some of these compounds at OPAR-Maido (OSU-Réunion) since 2017. The data collected at OPAR-Maido, which are not shown in this article, will strengthen the monitoring of these compounds at the scale of the Indian Ocean basin, and contribute to a better understanding of the current state and future of this pollutant in this part of the world.

Complete reference : Magand, O., Angot, H., Bertrand, Y., Sonke, J.E., Laffont, L., Duperray, S., Collignon, L., Boulanger, D., Dommergue, A., 2023. Over a decade of atmospheric mercury monitoring at Amsterdam island in the French southern and Antarctic Lands. Sci Data 10, 836 (2023). https://doi.org/10.1038/s41597-023-02740-9

Local contact : Olivier Magand, OSU-Réunion (olivier.magand@univ-reunion.fr)

External contacts : Aurélien Dommergue – Research professor at Grenoble Alpes University’s Institute of Environmental Geosciences (IGE) (aurelien.dommergue@univ-grenoble-alpes.fr), Hélène Angot – CNRS researcher at the Institute of Environmental Geosciences (IGE – OSUG) (helene.angot@univ-grenoble-alpes.fr), Yann Bertrand – CNRS Instrumentation Engineer at the Institute for Environmental Geosciences (IGE) (yann.bertrand@cnrs.fr)


Overview of atmospheric mercury species monitored on the subtropical island of Amsterdam since 2012. Gaseous elemental mercury (GEM) is the atmospheric species currently monitored in parallel to OPAR-Maido since 2017. Figure taken from Magand et al. 2023.

IR ILICO SNO Dynalit – L’observation du trait de côte

Découvrez une courte vidéo présentant les activités du Service National d’Observation Dynalit, le service labelisé axé sur l’étude du dynamique du littoral et du trait de côte. Le site transversal de l’Hermitage y est également évoqué. Merci au service drone de l’OSU-Réunion pour les prises de vue locales.


IR ILICO SNO Dynalit – Coastline observation

Discover a short video presenting the activities of the Service National d’Observation Dynalit, the certified service focused on the study of coastal dynamics and coastline. The Hermitage transverse site is also featured. Thanks to the OSU-Réunion drone service for the local shots.


Destruction rapide de l’ozone stratosphérique suite à l’injection massive de vapeur d’eau par le volcan Hunga Tonga-Hunga Hapa’ai.

(crédit: René Carayol, Université de la Réunion)

Le 15 janvier 2022, l’éruption du volcan Hunga Tonga-Hunga Ha’apai a fortement perturbé la haute atmosphère en émettant des cendres, du dioxyde de soufre (SO2) et autres gaz ainsi qu’une quantité exceptionnelle de vapeur d’eau (environ 150 millions de tonnes) dans la stratosphère à plus de 30 km d’altitude. Cet événement rare a été une opportunité pour étudier les processus chimiques dans un panache volcanique peu de temps après une éruption depuis l’observatoire du Maïdo. Les éruptions volcaniques peuvent affecter le climat et la chimie de l’ozone. Comprendre ces interactions est essentiel pour améliorer la modélisation des processus environnementaux et l’évolution du climat futur.

Notre étude a combiné des mesures in situ effectuées à l’aide de ballons météorologiques, des observations par télédétection au sol et des données satellites pour comprendre l’impact initial de l’éruption sur l’ozone stratosphérique. En seulement une semaine, la concentration d’ozone stratosphérique au-dessus du sud-ouest du Pacifique et de l’océan Indien a diminué de 5%. Cette diminution prend tout son sens lorsqu’on la compare au trou dans la couche d’ozone de l’Antarctique, où jusqu’à 60% de l’ozone est détruit chaque année sur plusieurs mois. L’humidification de la stratosphère après l’éruption a permis la formation rapide de petites gouttelettes d’acide sulfurique à partir du SO2. A la surface de ces particules, des réactions chimiques entraînent la conversion de composés chlorés en des moléculesqui détruisent l’ozone. Cette diminution de l’ozone dans la région tropicale dépasse celle des éruptions précédentes, soulignant le caractère exceptionnel de l’éruption du Hunga Tonga.

DOI : https://doi.org/10.1126/science.adg2551

Contact scientifique LACy/OSU-R : Stéphanie Evan, LACy (stephanie.evan@univ-reunion.fr)


Destruction rapide de l’ozone à la suite de l’éruption du Hunga Tonga : Après l’éruption du Hunga Tonga, une campagne de mesures à l’aide d’instruments sous ballons météorologiques a eu lieu à l’observatoire du Maïdo (photo de gauche). La dynamique du panache met en évidence l’injection volcanique de vapeur d’eau (H2O), de dioxyde de soufre (SO2) et de chlorure d’hydrogène (HCl), favorisant une conversion rapide des composés chlorés en molécule de chlore à la surface des aérosols volcaniques hydratés et une diminution de l’ozone dans la stratosphère. Le profil d’ozone du 22 janvier 2022 (ligne noire) contraste avec la climatologie de La Réunion (ligne rouge), montrant un déclin notable.

Rapid destruction of stratospheric ozone due to massive injection of water vapour by the Hunga Tonga-Hunga Hapa’ai volcano.

(credit: René Carayol, Université de la Réunion)

On January 15, 2022, the eruption of the Hunga Tonga-Hunga Ha’apai volcano severely disturbed the upper atmosphere, emitting ash, sulfur dioxide (SO2) and other gases, as well as an exceptional quantity of water vapor (around 150 million tons) into the stratosphere at an altitude of over 30 km. This rare event was an opportunity to study chemical processes in a volcanic plume shortly after an eruption from the Maïdo observatory. Volcanic eruptions can affect climate and ozone chemistry. Understanding these interactions is essential to improve modeling of environmental processes and future climate evolution.

Our study combined in situ measurements from weather balloons, ground-based remote sensing observations and satellite data to understand the initial impact of the eruption on stratospheric ozone. In just one week, stratospheric ozone concentrations over the south-west Pacific and Indian Oceans fell by 5%. This decrease is particularly significant when compared to the Antarctic ozone hole, where up to 60% of the ozone is destroyed each year over several months. The humidification of the stratosphere after the eruption enabled the rapid formation of small droplets of sulfuric acid from SO2. On the surface of these particles, chemical reactions convert chlorine compounds into ozone-destroying molecules. This ozone depletion in the tropical region exceeds that of previous eruptions, underlining the exceptional nature of the Hunga Tonga eruption.

DOI : https://doi.org/10.1126/science.adg2551

LACy/OSU-R Scientific contact : Stéphanie Evan, LACy (stephanie.evan@univ-reunion.fr)


Rapid ozone destruction following the eruption of Hunga Tonga: Following the eruption of Hunga Tonga, a measurement campaign using meteorological balloon instruments took place at the Maïdo observatory (photo left). The plume dynamics highlighted the volcanic injection of water vapor (H2O), sulfur dioxide (SO2) and hydrogen chloride (HCl), promoting rapid conversion of chlorine compounds to chlorine molecules at the surface of hydrated volcanic aerosols, and ozone depletion in the stratosphere. The ozone profile for January 22, 2022 (black line) contrasts with the climatology of La Réunion (red line), showing a marked decline.

Start of the TNA ATMO-ACCESS NetAeFoCs project at OPAR-Maido: Study of interactions between aerosols, fog and clouds under natural and anthropogenic influences.

View of the ACES instrumented container (TNA ATMO-ACCESS NetAeFoCs project) at OPAR-Maido and some of the team members from Stockholm University (Department of Environmental Sciences – ACES) and OSU-Réunion (October 12, 2023) (credit: Olivier Magand, OSU-R).

As part of the TNA ATMO-ACCESS NetAeFoCs project, the team(*) from Stockholm University (Department of Environmental Sciences – ACES), supported by and in collaboration with the Observatoire des Sciences de l’Univers de La Réunion (OSU-R), the Laboratoire de l’Atmosphère et des Cyclones (LACy) and French partners carrying out continuous on-site measurements (LaMP, LSCE…), is aiming to collect atmospheric observation data at the Observatoire Physique de l’Atmosphère de La Réunion (OPAR) at Le Maïdo (OSU-R measurement station). ), aims to collect data from atmospheric observations at the Observatoire de Physique de l’Atmosphère de La Réunion (OPAR) at Le Maïdo (OSU-R’s measurement station) to fill in the knowledge gaps that are absolutely essential to understand the improvement of models dedicated to the functioning of the atmospheric system (molecular model, cloud distribution…) on a regional or even global scale.

At the Maïdo observatory, we plan to record the composition and properties of aerosols and clouds in detail, using state-of-the-art observational equipment. The instruments are installed in a specially designed mobile laboratory (20-foot container). The latter has already been used to study aerosol-mist-cloud interactions in Italy’s Po Valley (FAIRARI campaign supported by ATMO-ACCESS) and during the ARTofMELT 2023 expedition aboard the Swedish icebreaker Oden. The OPAR at Maïdo is the 3rd major measurement station visited by this mobile laboratory.

After several weeks of ocean crossing, the container was finally installed at the Maïdo observatory on October 10, 2023, in a sea of clouds revealing the site’s potential for studying this component. The field campaign officially began on October 12, after 2 days of set-up, and will continue for at least 6 months, with continuous measurements of aerosols, clouds and atmospheric chemical compounds during the austral summer and cyclone season. In addition to ATMO-ACCESS, the field campaign is supported by the European Research Council and the Knut and Alice Wallenberg Foundation, Sweden.

(*) Project leaders (Ilona Riipinen, Claudia Mohr – currently at PSI, Switzerland – and Paul Zieger), PhDs (Almuth Neuberger, Lea Haberstock and Fredrik Mattsson), post-docs (Liine Heikkinen and Yvette Gramlich) (https://www.su.se/department-of-environmental-science/)

TNA project contact : Paul Zieger (paul.zieger@aces.su.se)

OSU-Reunion coordinator contact :  Olivier Magand (olivier.magand@univ-reunion.fr)


Schematic view of the atmospheric measurement instruments deployed during the OPAR-Maido campaign (OSU-Reunion) in the ACES container (credit: Department of Environmental Sciences, Stockholm University).

Démarrage du projet TNA ATMO-ACCESS NetAeFoCs à l’OPAR-Maido : Etude des interactions entre les aérosols, le brouillard et les nuages sous influences naturelles et anthropiques

Vue du conteneur instrumenté ACES (projet TNA ATMO-ACCESS NetAeFoCs) à l’OPAR-Maido et d’une partie des membres des équipes de l’Université de Stockholm (Département des Sciences de l’Environnement – ACES) et de l’OSU-Réunion (12 octobre 2023) (crédit: Olivier Magand, OSU-R).

Dans le cadre du projet TNA ATMO-ACCESS NetAeFoCs, l’équipe(*) de l’Université de Stockholm (Département des Sciences de l’Environnement – ACES) soutenue par et en collaboration avec l’Observatoire des Sciences de l’Univers de La Réunion (OSU-R), le laboratoire de l’Atmosphère et des Cyclones (LACy) et des partenaires français réalisant en continu des mesures sur site (LaMP, LSCE…), vise à collecter des données d’observations atmosphériques à l’Observatoire de Physique de l’Atmosphère de La Réunion (OPAR) du Maïdo (station de mesures de l’OSU-R) pour combler les lacunes de connaissances absolument nécessaires pour appréhender l’amélioration des modèles dédiés au fonctionnement du système atmosphérique (modèle moléculaire, distribution des nuages…) à une échelle régionale voire mondiale.

À l’observatoire du Maïdo, il est prévu d’enregistrer en détail la composition et les propriétés des aérosols et des nuages à l’aide de dispositifs d’observations de pointe. Les instruments sont installés dans un laboratoire mobile spécialement conçu (conteneur de 20 pieds). Ce dernier a déjà été utilisé pour étudier les interactions aérosols-brouillard-nuages dans la vallée du Pô en Italie (campagne FAIRARI soutenue par ATMO-ACCESS) et lors de l’expédition ARTofMELT 2023 à bord du brise-glace suédois Oden. L’OPAR du Maïdo est la 3ème station de mesures importante visitée par ce laboratoire mobile.

Après plusieurs semaines de traversée océanique, le conteneur a finalement été installé à l’observatoire du Maïdo le 10 octobre 2023, dans une mer de nuages révélant le potentiel du site pour étudier cette composante. La campagne de terrain a officiellement débuté le 12 octobre, après 2 journées de mise en œuvre, et se poursuivra pendant au moins 6 mois avec la mesure continue des aérosols, des nuages et composés chimiques atmosphériques pendant l’été austral et la saison cyclonique. Outre ATMO-ACCESS, la campagne de terrain est soutenue par le Conseil européen de la recherche et la Fondation Knut et Alice Wallenberg, Suède.

(*) Responsables du projet (Ilona Riipinen, Claudia Mohr – actuellement au PSI, Suisse – et Paul Zieger), Doctorat (Almuth Neuberger, Lea Haberstock et Fredrik Mattsson), post-doctorat (Liine Heikkinen et Yvette Gramlich) (https://www.su.se/department-of-environmental-science/)

Contact du projet TNA : Paul Zieger (paul.zieger@aces.su.se)

Contact du coordinateur OSU-Réunion :  Olivier Magand (olivier.magand@univ-reunion.fr)


Vue schématique des instruments de mesure atmosphérique déployés durant la campagne OPAR-Maido (OSU-Réunion) dans le conteneur ACES (crédit: Département des Sciences de l’Environnement, Univ. de Stockholm).

Formation en écologie forestière à l’Université de Maurice (UoM, University of Mauritius)


Dans le cadre d’un programme ERASMUS+, trois agents de l’OSU-Réunion se sont rendus sur l’île Maurice. Accueillis par Vincent Florens (professeur d’Ecologie au Department of Biosciences and Ocean Studies, University of Mauritius) et Claudia Baider (responsable du National Mauritius Herbarium), ils ont suivi une formation de terrain sur la préservation et la restauration des écosystèmes. 

Cette formation qui se déroulait principalement sur le terrain abordait deux thématiques autour des forêts tropicale insulaires :

– la problématiques des espèces invasives (Macaque monkey, cochon sauvage, ou Goyavier et Ravenale) qui menacent les espèces endémiques de l’île Maurice végétales (Tambalacoque, Harungana) et animales (Pink pigeon, Chauve-souris). 

– les mesures de séquestration du carbone en milieu forestier insulaire tropicale.

Une visite de la réserve Ebony Forest avec Nicolas Zuel (Conservation manager) a également permis d’appréhender les actions de restauration et préservation mises en place par ces acteurs semi-privés, ainsi que les difficultés rencontrées.

Cette mission bilingue à l’île Maurice, riche en échanges scientifiques et techniques, a apporté une réelle plus-value pour les études des écosystèmes forestiers à la Réunion.


Top